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Abstract

Stationary onset of convection due to surface tension variation in an unbounded multicomponent fluid layer is
considered. Surface deformation is included and general flux boundary conditions are imposed on the stratifying agencies
(temperature/composition) disturbance equations. Exact solutions are obtained to the general N-component problem
for both finite and infinitesimal wavenumbers. Long wavelength instability may coexist with a finite wavelength instability
for certain sets of parameter values, often referred to as frontier points. For an impermeable/insulted upper boundary
and a permeable/conductive lower boundary, frontier boundaries are computed in the space of Bond number, Bo, vs
Crispation number, Cr, over the range 5x 1077 < Bo < 1. The loci of frontier points in (Bo, Cr) space for different
values of N, diffusivity ratios, and Marangoni numbers collapsed to a single curve in (Bo, ZCr) space, where & is a
Marangoni number weighted diffusivity ratio. © 1999 Elsevier Science Ltd. All rights reserved.

Nomenclature @ Dbasic state velocity
Bo Bond number, pgd?/c w normal mode velocity
Cr Crispation number, u%,/od x; Cartesian coordinates.

d thickness of layer

2, component diffusivity

9, diffusivity ratio, Z,/%,

%, Ma, weighted average of diffusivity ratios
g gravitational acceleration

h;,  disturbance surface conductance
Ma, Marangoni number, y,AS.d/uZ,
Nu;,  Nusselt number, (/,d/Z))

p pressure

Pr Prandtl number v/Z,

R correlation coefficient

s, kth disturbance stratifying agency
Sk kth stratifying agency

u; disturbance velocity
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Greek symbols

o wavenumber

v kth surface tension gradient, do/dS)
{ free surface deformation

u  dynamic viscosity

v kinematic viscosity

o surface tension

yx normal mode stratifying agency.

Superscript

1 lower boundary at x; =0

u upper boundary at x; = 1
basic state variable.

Subscript

¢ critical value

fp frontier point

i,j Cartesian coordinate indices, 1,2, 3
k associated with kth component
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dimensional variable.

1. Introduction

Multicomponent onset of convection is important in
many naturally occurring phenomena and technological
processes. Examples include: convection in stars, dynam-
ics within the earth’s core, oceanography, solar
ponds, coating/drying processes and crystallization/
solidification [1-6]. Various extensions of Rayleigh’s
normal mode analysis [7] to multicomponent systems
have contributed to the characterization of physical con-
ditions and fluid properties that are necessary for con-
nective onset to occur, and the nature of the resulting
instability. Double diffusive systems where convection
occurs due to density variations have received the greatest
attention to date [1-3, 8], although results for three or
more components have also been reported [1, 4, 6].

Under certain conditions such as thin liquid films or
microgravity, surface tension variations along a free sur-
face may also induce convection. Onset of convection
due to surface tension variation, also known as the Mar-
angoni—Benard problem, was first examined by Pearson
[9] with reference to drying paint films. The importance of
surface deformation to the Marangoni—Benard problem
was established by Scriven and Sternling [10] while grav-
ity effects and overstability associated with a deformable
free surface were investigated by Smith [11], Takashima
[12, 13], and Perez-Garcia and Carneiro [14]. The Benard
problem has been extensively studied and a significant
portion of the immense body of literature for the single
component Benard problem has been summarized by
Koschmieder [15]'. Recent reviews of thermocapillary
instabilities, including the Marangoni—Benard problem
are given by Davis [16] and Legros et al. [17].

In connection with microgravity materials processing
applications, McTaggart [18] considered the stability of
double diffusive fluid layer with a flat interface subject
to surface tension variations at the free surface. In the
presence of both buoyancy and surface tension variation
effects, Chen and Su [19] studied the double diffusive
layer where both temperature and concentration gradi-
ents are imposed across the layer. In subsequent exper-
imental work, Tanny et al. [20] modified the linear stab-
ility analysis of Chen and Su [19] to account for a basic
state with a non-linear concentration profile. The exper-
imental and theoretical results were found to be in very
good agreement [20]. Building on the work of Scriven
and Sternling [10], Smith [11], and McTaggart [18], the
double diffusive problem with deformation of the free

' According to Koschmeider [15], more than 500 (single com-
ponent) Benard related publications were written prior to 1993.

surface was examined by McCaughan and Bedir [21] who
neglected gravity effects. A recent numerical study by
Char and Chiang [22] confirms the earlier double diffus-
ive works [18, 19] and also examines the effects of defor-
mation in the combined presence of gravity and surface
tension forces. In Char and Chiang’s investigation as
well as the single component study by Perez-Garcia and
Carneiro [14] a comprehensive set of stationary and oscil-
latory results are presented, and the existence of a single
frontier point is identified. To date, only single and two
component (double diffusive) systems have been con-
sidered when convective onset is due to surface tension
variation.

We focus on the stationary stability behavior of a
multicomponent system applying traditional methods of
analysis that lead to exact solutions for a system with an
arbitrary number of components, or N-components. One
intrinsic value of the analytical solution is the wealth of
physical insight gained from examination of the solution
form and its limiting behavior. With the aid of idealized
boundary conditions, exact solutions have resulted in
greater physical understanding of single component and
multicomponent buoyancy driven problems as well as
single and double diffusive surface tension driven prob-
lems [1-11, 18, 21, 23-26]. Furthermore, analytical solu-
tions are critical for comparison and validation of
numerical computations which will ultimately be used to
analyze the behavior of more complex systems [5]. In
addition to further validation of published results, we
find that recently reported stationary stability results for
the surface tension problem can be obtained directly from
our exact solutions. These solutions also permit straight-
forward computation of the boundary that separates the
long and finite wavelength instabilities, denoted as a fron-
tier boundary, in appropriate parameter space.

The onset of convection due to surface tension vari-
ations in a multicomponent fluid is considered in this
study. Deformation of the free surface is permitted and
the gravity term is also included in the normal stress
condition. Mixed flux boundary conditions are applied
to the stratifying agency (heat and/or composition) trans-
port equations at both bounding surfaces. The analysis
is confined to stationary onset of convection and an exact
solution is derived for the problem with N-stratifying
agencies. Cross-diffusive effects of interest in recent
binary fluid investigations [8, 24, 26, 27] are neglected.
Special cases of the solution are treated for boundary
conditions typically applied in the literature [9-14, 18—
22] and in the limit of infinitesimal wavenumber.

Spatial structures or normalized eigenvectors at neu-
tral stability are briefly examined. Stationary stability in
the multicomponent problem with surface deflection and
gravity is explored and presented in the context of a single
component system. Most significantly, frontier points
and frontier boundaries, and the conditions for which
they exist, are examined in parameter space for a multi-
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component system. Frontier boundaries are computed
over the Bond number range 5x 1077 < Bo < 1, extend-
ing the previously reported range which was a single
frontier point at Bo = 0.1 [14, 22]. Although the frontier
points in (Bo, Cr) space are found to be functions of Ma,
and 2, in a multicomponent system, they collapse to a
single frontier boundary curve in (Bo, ZCr) space.

2. Mathematical formulation

We examine a fluid layer that is unbounded in its lateral
dimensions, x,;, and x,, and is of dimension 0 < x; < d
with a deformable free surface located at x; = d. The
velocity basic state is quiescent, U = 0. The overbar
denotes a basic state variable while the underscore tilde
denotes dimensional quantities. A stratified basic state is
imposed on the composition and/or temperature vari-
ables that takes the form:

— — —X
@) = S0 -ASY

where AS, = S,(0) — S(d). Therefore, following [4] and
[6], we denote S, as the kth stratifying agency (com-
position or temperature) of a fluid layer consisting of N-
stratifying agencies.

The linearized disturbance momentum and kth strati-
fying agency transport equation are given by eqns (1)
and (2).

w1 P 0%y,

or B p 0x; +V(3;g,6.3g, M

Oy Oy AS
al - @/{ a;)g/a?g/ + d %3 (2)

for:i,j=1,2,3and k=1,2,...,N

The disturbance variables, u, s, and p are velocity,
component and pressure, respectively, while the physical
properties, density, kinematic viscosity and diffusivity are
denoted as p, v, Z,. The stratifying agency with the largest
2 is chosen as the k = 1 component. Surface tension, o,
is assumed to vary linearly with, S; as,

ref+ Z 5Sk k LSref)'

The boundary conditions are given by eqns (3)—(8).
At x; =0,

6=0 G)
Gy —tin) =0 @

Atx;=d

- )

ous | dw\ & (w08 8

s <65/ * 0«5;) T k; e (bix/ T ox oy, ©
’\2C

— 2

p+pgl+ ué PRl 7

o8k oS,

9 B el =

(Jk o5 + 1 <~k 25 ~>> - 0 (8

where [=1,2
k=1,2,...,N.

A no-slip-impenetrable surface is imposed at x; = 0,
eqn (3). Mixed disturbance flux conditions, eqns (4) and
(8) are imposed at both the upper and lower boundaries
on the kth stratifying agency transport equation, where
hY and /" are the disturbance heat or mass transfer
coefficients or surface conductances [9, 10, 18] at the
upper and lower surfaces, respectively. The remaining
boundary conditions at x;=d are the kinematic
conditions, eqn (5), tangential stress conditions, eqn (6)
and normal stress condition, eqn (7).

After eliminating the perturbation pressure [9-11, 21,
23], the disturbance equations are nondimensionalized
using reference values, d, Z,/d, d*/Z,, AS,, Z, for length,
velocity, time, kth component, and diffusivities, respect-
ively. Solutions are then assumed of the form:
(u, 51, 0) = (W(x3), 1 (x3), ) e @™1+%%2) with the result-
ing normal mode equations given by eqns (9) and (10)
below, where o® = o +a3.

(lateral  directions only) and

AD?*—o*)w = Pr(D* —o*)*w 9)
e = De(D* + ) +w (10)
Normal mode boundary conditions are:
At x; =0,
w(0) =0 an
Dw(0) =0 (12)
DXI\’lX3:0 _Nu}c/)xkl‘(}:() =0 (13)
Atx; =1,
AL =w(l) (14)
N
(D*+oP)w = —o? Z D May(y — ) (15)
k=1
D 1
220 (DP =302 D)yw— — (4" + Boo®)( (16)
Pr Cr
Dituly= 1+ Nuf® (= Ol =1 = 0 17)

The surface Nusselt numbers” at the upper and lower
boundaries, Nu® and Nu{, are defined as 4{"d/Z, and

?In single component studies Nus are also denoted as surface
Biot numbers, and in double diffusive analyses, often denoted
as surface Nusselt and surface Sherwood numbers.
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Table 1

Solution coefficients, b, and b, for limiting disturbance flux boundary conditions

Disturbance flux boundary conditions by

(@) (N ,(Nu) — (0, 0)

“2

(ii) (Nuf,(Nui) - (0,0)

8w

1 csch o sech a(o cosh o — sinh ar)?
“ (34 by =0

o

acotha(xcotha—2)+1

(13

hPd/Z,, respectively, while other dimensionless par-
ameters are given in the Nomenclature.?

3. Results and discussion
3.1. Spatial shapes and normalized eigenfunctions

For stationary stability, 2 = 0, thus solutions for w(x;),
%.(x3) and {, can be deduced from the above set of equa-
tions. After applying boundary conditions (11), (12) and
(14) the solution for the disturbance velocity, w(xs), in
terms of a single undetermined coefficient, a,, eqn (18),
is given. The solution for the kth disturbance stratifying
agency, Y eqn (19), contains two coefficients, b, and
b,, in addition to the undetermined coefficient, «,. The
flux conditions, eqns (13) and (17), are applied to deter-
mine by, and b,,, and q, is factored from all terms. The
deformation solution, {, eqn (20), determined from eqn
(16) also contains the undetermined coefficient, a,.

w(x;) = a,[(1+ (zcoth oo— 1)x3) sinh ax; —ax; cosh ox;]

(18)

X (x3) = % (b,k sinh ax; + b, cosh ox;
k

0!2

tho—1
+ <Mx3 + (x3)2> sinh ox;

- é(Bx3 + (¢ cotha—1)(x;)?) cosh ocx3> (19)

2Cra? cshe(or)

a — A
' Boto?

Aside from the fact that spatial shapes, w and y,, need be

determined as part of a parameterized stationary stability

solution, they also provide physical insight to the flow
behavior along the stationary stability boundary. Inspec-

{=-— (20)

*If the kth stratifying agency is temperature, the kth transport
equation is the energy equation and Nu, is defined as
Nuy = hyd/pc,Dy.

tion of eqn (18) immediately reveals that a, affects only
the magnitude of w(x;), but not its normalized eig-
envector or spatial shape. The spatial shape of w(x;)
is therefore invariant to all flow parameters with the
exception of ¢, even for a multicomponent system with
an arbitrary number of stratifying agencies. We observe
that the stationary spatial shape of y,(x;), eqn (19), is
independent of all &, in an N-stratifying agency system
as well as independent of a,. However, because b,, and
b, are, in general, functions of the o, Cr, Bo, Nu{’, and
Nuf®, these parameters influence both magnitudes and
spatial shapes of y,(x;).

The invariance of w(x;) is meaningful in the following
special but important cases, although it is less important
to the general problem since the critical wavenumber is
dependent on the other parameters which in turn affects
the onset spatial shape. Attention is therefore focused on
the important case of an impermeable (or insulated)
upper surface, Nu{® — 0, for all k, and we consider the
following two limiting disturbance flux conditions at
x5 = 0: permeable (or conductive), Nu{’ — oo, and imper-
meable (or insulated), Nu{’ — 0 forallk, k =1,2,...,N.
Both limits are of physical significance and reduce to the
two most important single and double diffusive cases
treated in the literature [9-14, 18-22].

In both limits of Nu{’, the coefficients, b,, and b, are
given in Table 1 and are shown to reduce to functions
solely of wavenumber, o. Consequently, the stationary
spatial shapes of both w(x;) and yx.(x;) are invariant
with Ma,, 2., Cr and Bo. Moreover, this property of
invariance also applies to any combination of the two
flux limits of a multicomponent system with N-stratifying
agencies. Therefore if the spatial shapes or normalized
eigenvectors are known for a given «, for example, along
a stationary stability boundary in («, Ma,) space, for one
parameter set of (Ma,, 2,, Cr, Bo) (for [ # k) then the
normalized eigenvectors are the same for any other set of
(Ma,, 2,, Cr, Bo). As observed in Section 3.3 on frontier
points, the shape of the neutral stability curve is dras-
tically influenced by Cr and Bo for « typically less than 2,
yet the spatial shapes of the disturbance variables remain
unchanged at a given «. For both limiting cases, the
normalized eigenvectors of y,(x;) are identical for all &,
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however, in the following section, we show that neutral
stability boundaries in the presence of deformation are
influenced by Z,.

3.2. Stationary solution and limiting cases

Substituting the spatial shapes, eqns (18) and (19), into
the tangential stress equation, eqn (15), yields an exact
solution for stationary stability of a multicomponent
system. The use of general disturbance flux conditions
allows for finite Nu, values at both boundaries and also
eliminates the need for separate solutions for different
limiting cases [9-14, 18-22] which becomes impractical
as the number of stratifying agencies, N, increases. A
tedious solution process remains unavoidable, par-
ticularly with the incorporation of mixed flux conditions
at both boundaries. However, after substantial manipu-
lations, a surprisingly concise solution emerges as

(sinh? . tanh o — o® ) Nu® + ou( (o 4 sinh? o) — (2 +o* ) tanh o) +

N
Z Maka@k
=1

N W
Mas =Y Ma,, and 9 =
k=1

Mas

The above formulations demonstrate the equivalence
between the multicomponent solution for arbitrary N-
stratifying agencies and the single component problem.
The single component formulations, eqns (22) and (23),
are insightful, although it is typically more convenient to
compute neutral stability values of Ma, (j # k) directly
from eqn (21). They also play a central part in our exam-
ination of frontier point behavior in multicomponent
systems.

For a flat interface, Cr = 0, the & term is eliminated,
and it is apparent that the Ma, are additive with their
sum, Mas, fixed for given «. In these special cases, we
note that similar conclusions also follow for the flat inter-
face from inspection of the normal mode equations for

8Cra,.o° (o tanh o+ Nu®)
(Bo+0a?)

1 I
8oc<ocf Esinh2a>+ Y Ma,
k

=0

= (o + Nuf Nu) tanh o+ o (Nuf® + Nul”)

In this form it is easy to see that the singly diffusive
solutions of [9, 10 and 12], the doubly diffusive solutions
of [18, 21] and previously unreported solutions for three
or more stratifying agencies are obtained for N =1,
N =2and N > 3, respectively.

We again refer to the two limiting cases presented
in Table 1, with the understanding that other signifi-
cant parameter limits could also be explored. In both
limits, Nu® — oo and Nu — 0, the resulting multi-
component solutions can be recast as effective single
component solutions. Equation (22) corresponds to
Nu - o (for all k) and eqn (23) corresponds to
Nul -0, (for all k).

of L
8o | o 2smh2o¢

May = Py 22)
o’ — sinh? a tanh o — x o
o>+ Bo
2 1.
8o [ o0 — Esmh 20
Mas = — (23)
o . 1 8u* Crd
o +200—o” cotho— —sinh 24 — ——
2 o?+Bo

where May denotes the summation of the Ma,, and & is
a Marangoni number weighted average of the diffusivity
ratios, 9.

e2))

A = 0. Consistent with the single component layer, mul-
ticomponent critical values, (o, (Masg),), are (1.993,
79.604) and (0,48) for the respective Table 1 cases. This
is a direct generalization of the conclusion reached by
McTaggart [18] for the double diffusive layer with a flat
interface. In their double diffusive analysis, Char and
Chiang [22] report oscillatory neutral stability results for
2, = 0.04 while stationary stability results are reported
for 2, = 1. Including the effect of surface deformation,
they note an additive or direct reinforcement nature of
Ma, and Ma, in the case of stationary onset. Their obser-
vation is consistent with our results for &, = 1, but it
fails to hold when &, # 1. For 2, # 1, the relationship
between Ma, and Ma, is modified by the presence of 2,
in the deflection (Cr) term of eqns (21) and (22) for
stationary onset. In a multicomponent layer, N > 2, we
find that Char and Chiang’s direct reinforcement of Ma,
similarly holds when 2, = 1 (for all k). However, in the
presence of surface deflection, & is no longer negligible,
as variations among &, can have a profound effect on
neutral (stationary) stability, especially for infinitesimal
wavenumber.

Although the neutral stability solutions, eqns (22) and
(23), are of indeterminant forms at o =0, the limit
o — 0 merits examination because onset of convection
often occurs at an infinitesimal wavenumber for various
boundary flux and surface deformation parameter values.
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Characterization of the stability behavior in this limit is
also required for investigating frontier point boundaries.
Successive application of L’Hospital’s rule to eqns (22)
and (23) yield the following stationary stability relations
for a multicomponent layer in the limit oo — 0.

2 Bo

10" Mas9  (for Nul’ — o, all k) (24)
2B 7
2 Fi = - (for Nuf’ -0, all k) (25)
)
=

For a singly diffusive layer, eqn (24) agrees with the small
wavenumber results of [11, 13, 24], Ma, = 2/3 Bo/Cr,
and further confirms the numerical results of [14, 22].
Extending the analysis to the other flux limit, Nu{ — 0,
we find that onset of convection always occurs in the
limit & — 0 as for a flat interface and that eqn (25) yields
the multicomponent exact solution for the critical
value(s) (Ma;).. For example, Ma, is given by
Ma, = 48(1+72 Cr/Bo)~" for a singly diffusive layer. In
both cases, Ma, is a function of a single parameter, the
ratio (Cr/Bo) in the o — 0 limit. For a permeable (con-
ductive) surface at x; =0, Ma, takes on values,
0 < Ma, < o0, over the range 0 < Bo/Cr < oo while Ma,
is bounded in the interval 0 < Ma, < 48 for an imper-
meable (insulated) lower surface for the previous Bo/Cr
range.

Using the single component problem for validation,
Char and Chiang [22] confirmed that their small wav-
enumber neutral stability results approached the ana-
lytical results reported in [11, 25] for the limit o — 0.
Their double diffusive stationary results for nonzero Ma,
(—100 and 100) also agree with the exact solution, eqn
(24), for the limit o — 0, although the relationship,
Ma,.+ Ma,. = Ma,, holds only for &, = 1, as discussed
for the finite wavenumber case. We find from eqn (24)
that the exact double diffusive solution for Ma, in the
limit o — 0 is expressed as:

2 Bo
" 3Ca
where the stationary values of Ma, are translated up or
down by the product (2,Ma,). When stationary onset
occurs at finite wavenumber, e.g. o &~ 2, the deviation
from ignoring the &, dependence is often small. When
onset occurs at infinitesimal wavenumber, large errors in
Ma, are likely for nonzero Ma,. For Nu — 0 an exact
relation for Ma, (or other Ma,) involving N-stratifying
agencies is similarly obtained from eqn (25).

Ma, —9,Ma,

3.3. Frontier points

For certain parameter value sets, onset of convection
can occur simultaneously at two different modes. This
set of parameters where two spatial modes can coexist
during onset has more recently been referred to as a

frontier point [14, 22]. Dynamics in the region of a fron-
tier point is anticipated to be complex. For example,
Proctor and Jones [28] observed interesting dynamical
behavior when two modes compete in destabilizing a two-
fluid system while similar nonlinear analyses are ident-
ified in [14]. A practical consequence of identifying fron-
tier points or frontier boundaries is that a quantitative
criterion is then established for determining which of the
competing modes occurs at convective onset for a given
set of parameter values. In the ensuing analysis this para-
meter set is (o, May, 2y, Cr, Bo). The component flux
conditions given in Table 1 are again applied. Because
stationary onset always occurs in the limit « — 0 for
Nu — 0 this case need not be considered any further.
The case of Nu{ —0 and Nu{’ — oo, for all k, has
received recent attention [14, 22], and a single frontier
point (Bo, Cr) has been identified in these studies.

The existence of frontier points is confirmed by the
neutral stability curves for four different (Bo, 2 Cr) values
shown in (¢, May) space in Fig. 1. For (Bo, ZCr) values
of (0.05, 0.0006) and (0.05, 0.0003) convective onset
occurs at infinitesimal and finite wavenumber, o ~ 2,
respectively. Convective onset occurs simultaneously at
two different spatial modes for the two remaining curves,
i.e. frontier points exist at (Bo, ZCr) values of (0.05,
0.0004212) and (0.5, 0.004456). Decreasing ZCr for con-
stant Bo leads to stabilization at small wavenumbers
which is consistent with the view [11, 14, 22] that increas-
ing Bo for a given Cr is stabilizing. In Fig. 1, we find that
(2 Cr)y, increases with increasing Bo, while Mayg, and o,
decrease. The neutral stability curves flatten considerably
for wavenumbers less than oy, as the frontier parameter
values (Boy,, @Crfp) are increased. While the parameters,
May and 2, allow for consideration of a multicomponent
fluid layer, they are also applicable to the case of a singly
diffusive layer, N = 1, by treating Mas as Ma, and setting
9 =1.

As in the case of stationary stability boundaries, &,
has no effect on frontier point behavior for a flat interface,
Cr =0, however this is not true when deformation is
included. In their numerical analysis of a double diffusive
layer with deformation, Char and Chiang [22] examined
frontier point behavior at a Bo value of 0.1 and &, = 1.
Extending this work, we explore this behavior for &,
values more typically encountered in thermosolutal and
double diffusive systems using the exact solution, eqn
(22). Frontier point curves for Ma, values for 100 and
— 100 are shown in Figs 2 and 3, respectively. Variations
of &, dramatically affect the value of Cry,, while Mayy,
and oy, are independent of its value. The local maximum
value of Ma, between the two critical modes decreases
(increases) for positive (negative) Ma, and &, decreases.
The flattening effect of 2, is pronounced for positive
Ma,. For values of 2, typical of thermosolutal systems,
2, < 1072, the minima and local maximum becomes
visibly indistinguishable in Fig. 2. For negative Ma,,
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o
Fig. 2. The influence of &, on frontier point stationary stability boundaries for Ma, = 100, Bo = 0.05, o, = 1.975: 9, = 1.00,
Criy =4212x107% ------ 2,=050, Crp=1144x10"% ——— 2,=025 Cr,=8045x10"% —@— 2,=0.23,

Cryy =2.321x 107",

Fig. 3 reveals that the local maximum is bounded for
0<9,<1.

In general, values of Cry, are strongly influenced by
both 2, and Ma, for the double diffusive problem. Com-
paring Figs 2 and 3, we find that the value of Cry, increases
with decreasing &, for positive Ma, and decreases with

negative Ma, when Bo is constant. In Fig. 2, stationary
onset occurs at o = 1.975 in a double diffusive layer with
2, < 0.5 and Cr of 0.001, and in the long wave length
limit, & — 0, for 2, = 1. In a double diffusive layer, with
92,, Bo and Cr values of 0.05, 0.5 and 0.001, respectively,
stationary onset occurs at the finite wavenumber,
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o
Fig. 3. Influence of &, on frontier point stationary stability boundaries for Ma, = —100, Bo = 0.05, o = 1.975: — 2, =1,
Cryy =4212x107% ------ 2,=05, Cry, =2.581x10"% - 2,=0.1, Cry =1971x107% ——— 2,=10.01, 0.001, 0,

Cry, = 1.861 x 107,

o, = 1.975 when Ma, is positive, Ma, = 100. However,
for negative Ma, (Ma, = —100 in Fig. 3), Cr exceeds
Cry, and onset occurs in the long wave length limit, o — 0.

The multicomponent problem was recast as a single
component problem leading to stationary stability solu-
tions, eqns (22-25) with the aid of May and 2. An inter-
esting characteristic of this reformulation is that it allows
frontier boundaries for an arbitrary number of stratifying
agencies, and varying values of 2, and Ma, to be
described by a single curve. This is demonstrated in Fig.
4 where the frontier boundary spans over six orders of
magnitude in (Bo, ZCr) space. The boundary directly
applies to the single component system by setting & to 1
and May to Ma,. Along the frontier boundary, two spa-
tial modes compete to destabilize the fluid layer. To the
left and above the frontier boundary in Fig. 4, onset of
instability is associated with the infinitesimal wav-
enumber mode, o — 0, while to the right and below the
boundaries, onset of convection is associated with finite
wavenumber modes. The frontier boundary for & > 0 is
described quite well by the fitted equation,
ZCr/Bo""" = 0.00893, for the range of Bo examined,
5%x1077< Bo< 1. Thus we find for ZCr/Bo"" >
0.00893 stationary onset is characterized by a large global
circulation cell, & — 0, while finite sized convection cells
occur when the inequality is reversed.

While & can take on negative values when

N
MaZ < Z (1 _D@/C)Mak’
k=2

ke

our results suggest that Ma;% must be positive for a

frontier point to exist. Subject to the condition that
May)|,_, is a local minimum, Mas% > 0 is necessary for
the existence of a frontier point, as described in the
Appendix. The extremum boundary given by eqn (A.7)
in the Appendix, is shown in Fig. 4 insert as a dotted
line. Above and to the left of extremum boundary curve
(dotted line), May,_ is a minimum; while below and to
the right of the boundary curve, May  is a local
maximum. As would be expected, the frontier boundary
in Fig. 4 lies above the extremum boundary curve guaran-
teeing that one local minima occurs in the long wave-
length limit, o — 0. The extremum boundary curve
approaches the frontier boundary with increasing Bo over
the range of Bo investigated, 1077 < Bo < 1.

Selected frontier point values shown in Figs 4 and 5
are given in Table 2. For the single Bo value of 0.1, Perez-
Garcia and Carneiro [14] computed frontier points for
the singly diffusive layer varying the relative importance
of buoyancy and surface tension variation. They found
that the minimum Cr value, 8.47 x 10~3 at which a fron-
tier point existed occurred in the absence of buoyancy.
This frontier point which is identified in Fig. 4 was simi-
larly obtained in the double diffusive fluid layer for
2, = 1[22]. Inspection of eqn (22) and Fig. 4 reveal that
the stationary stability behavior of the singly diffusive
system [14] and doubly diffusive system [22] are equivalent
when 2, = 1.

The allowable values of Ma, for which two spatial
modes coexist during stationary onset of convection are
also restricted by the possibility of oscillatory instability.
While our analysis is confined to stationary stability,
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Fig. 4. Frontier point boundaries in (Bo, ZCr) space: [®] represents frontier point identified in [14, 22]. Curve fit:
Cr =8.93x1073Bo"""; R = 0.99994. The dotted line in the insert is the extremum boundary for Mas (o = 0). Above the dotted line,

Mas (« = 0) is a local maximum, below this line it is a local minimum: —— frontier boundary;

(o =0).

extremum boundary for May
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Fig. 5. Critical finite wavenumber, oy,, and Mas values associated with frontier boundaries: —— May ------ Oy

oscillatory convective onset is possible when one or more
of the N-components with Z, < 1, is stabilizing, i.e.
Ma, < 0. Three types of frontier points, characterized by
two coexisting modes that have been identified in the
extensive analyses by Perez-Garcia and Carneiro [14] and
Char and Chiang [22] are: both stationary modes, both

oscillatory modes, or one stationary/one oscillatory
mode. Our study has focused on the coexistence of
stationary modes for broad ranges of Bo, Ma, and &,
values, however, the influences of these parameters on
the other two types of frontier points remain largely
unexplored for the multicomponent layer.
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Table 2
Selected frontier point parameter values corresponding to Figs
4and 5

Bo (ZCr)y, (Mas)s, Oy
0.0001 8.3751077 79.606 1.993
0.001 8.37510°¢ 79.598 1.993
0.01 8.384 1073 79.514 1.989
0.05 421210~ 79.144 1.975
0.1 8.473 1074 78.677 1.956
1.0 9.586 10~ 69.544 1.540
Table 3

Bo and Cr values for common liquids

Pr Bo Cr 9,
Water 5.83 0.0343  3.53E-06 —
Mercury 0.0248 0.0703  2.92E-05 —
Glycerin 6780 0.0490 0.00237 —
Silicone oil 105 0.1141 8.85E-05 —
Water—ethanol’ 7.7 0.04301 6.47E-06 0.008

(d = 0.5mm, g = 9.81 m s~?) property values chosen at approxi-
mately 300 K.
' Water—ethanol mixture 4% ethanol by weight.

Bo and Cr values of common fluids for a layer depth
of 0.5 mm and in a 1-¢ gravity environment are given in
Table 3. For a singly diffusive layer, values of the first
four fluids are in agreement with those reported in [11].
Examination of Figs 4 and 5, reveals that onset will occur
at finite wavenumbers for water, mercury, and Silicone
oil, while onset occurs at infinitesimal wavenumber for
Glycerin. In a reduced gravity environment of 10~° g, Bo
decreases by five orders of magnitude, and Fig. 4 indicates
that onset occurs at infinitesimal wavenumber for all
Table 3 fluids. Evaluation of a frontier point behavior
for the water-ethanol thermosolutal system proceeds as
follows. First (@Cr)fp and (May);, values of 3.62x 10~*
and 79.2 corresponding to Bo = 0.0430 are obtained
from Figs 4 and 5, respectively, or computed from eqns
(22) and (24). The Z values, 0.373, 0.00310 and —0.252
are computed using the three Ma, values, 50, 79.6 and
100 given in Fig. 6. As indicated in the Appendix, the
negative May% value immediately rules out a frontier
point for Ma, = 100. Onset occurs at a finite wavenumber
as observed in Fig. 6 for the stability curve associated
with Ma, = 100. The above condition, requires that
Ma, < 79.85 for a frontier point to occur. For the remain-
ing two Ma, values, Cry, is greater than the Table 3 Cr
value, therefore, onset occurs at finite wavenumber. The
corresponding neutral stability curves at Cry;, and Table
3 Cr values are also shown in Fig. 6. Re-evaluating for
107° g, leads to convective onset at an infinitesimal
wavenumber similar to the singly diffusive systems.

150 LI 1 1 I 1 '

= Unstable -
100 —
=
-
=
i
o 50
=
0
-50
a
Fig. 6. Neutral stability curves for double diffusive (water—ethanol) system, &, = 0.008, Bo = 0.0430:. —— Ma, = 50, % = 0.374;

------ Ma, =79.6, % = 0.003; - - - - - - Ma, = 100, & = —0.252.



J.R.L. Skarda, F.E. McCaughan/Int. J. Heat Mass Transfer 42 (1999) 2387-2398 2397

4. Conclusions

Traditional analyses have been used to examine the
stationary onset of convection in a multicomponent fluid
layer due to surface tension variation along a free surface.
Deformation and gravity effects at the free surface have
been treated, and mixed flux conditions have been applied
to the stratifying agency transport equations at both
boundaries. An exact solution for neutral stability owing
to an exchange of stabilities, and valid for N-stratifying
agencies, has been obtained. In addition, the solution was
evaluated in the limit « - 0. For two limiting sets of
boundary conditions examined, the spatial shapes of vel-
ocity and the stratifying agencies are invariant with all
parameters except wavenumber. The spatial shapes then
remain unchanged at stationary onset in a multi-
component system for any combination of Ma, under
these circumstances.

The loci of points along which two modes can occur
simultaneously has been determined over a range of Bo,
1007<Bo<1 for the limit flux conditions
(Nul®, Nu{™) — (o0, 0). Frontier points in (Bo, Cr) space
are found to be functions of Ma, and &, but can be
presented as a single frontier boundary curve in (Bo,
9 Cr) space that accounts for different values of Ma,, 2,
and Bo of a multicomponent system with arbitrary N-
stratifying agencies. The frontier boundary was rep-
resented quite well by the empirical relation,
(ZCr), = (Bog,)'*" 0.00893 for range of Bo specified
above. For Bo > 0, the existence of a frontier point
requires that (Mas%) be a positive value.
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Appendix

Assumptions and conditions related to the existence of
frontier points

Equation (22), which is the multicomponent stationary
neutral stability solution for flux conditions,
(Nufd ,(Nu™) —(0,0), can be written in the following
form:

1
8o? (* sinh 20— oc>
2 N

= Ma, Y, Al
80> Cr /ch . (A1)

o>+ Bo

sinh? o tanh o — or® 4

where:

80’ Cra,
sinh? o tanh o — o + “27”3/
Y, = o+ Bo (A2)
L ,  8a’Cr
sinh” octanh ot — o +
o>+ Bo

In Section 2 the stratifying agency with the largest &
was declared the kK = 1 component. Additionally, Z, > 0
for all k, therefore the diffusivity ratio, &, is bounded
within the range 0 < 2, < 1.* Bo > 0 to preclude the
Rayleigh-Taylor instability [11]. Takashima [13, 14] has
theoretically examined the case of Bo < 0 for a single
component layer, however, such basic states have not
been observed experimentally, and may not be physically
realizable as he [14] notes as well. Given these constraints
on Bo and Z,, the left-hand side of eqn (A.1) is always
positive, therefore,

N
Y Ma, Y, =20
k=1

and eqn (A.2) requires 0 < Y, < 1. This leads to the
following inequalities,

N

)

k=1

N

=)

k=1

Ma, Ma, Y,

and

N

)

k=1

May Ma, %,

N
> )
k=1

which are useful in establishing property and parameter
bounds, or estimating parameter values, such as given
Ma,, &, or Ma,%,.

In terms of May and & eqn (A.1) gives:

8o’ (1 sinh 20— oc>
2

= Mas(k, +k,2) (A.3)

8u’C
sinh? o tanh o — o +
«*+ Bo
where
8 5c, —1
k, = <1+ il > (A.4)
(2> + Bo)(sinh? o tanh o — o*)

K = ((zxz—f—Bo)(sinh2 atanh o —o?) N 1>*1 (A5)

B 8o’ Cr
Again noting the earlier constraints on Bo and Z,, eqn
(A.3) requires that Mas(k,+k,2) > 0, while k, and k,
are bounded as 0 < k,, k, < 1. Consequently, if & > 0, it
follows that May > 0. Although & can take on negative

*This would not apply when cross-diffusion, such as the Soret
or Dufour effect, is important, since negative cross-diffusive
coefficients are possible [8, 24, 26, 27].
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values, our study of frontier boundaries is confined to,
% > 0, thus also requiring May > 0.

Subject to the constraint that one minimum is located
in the long wavelength limit, « — 0, then the following
condition obtained from eqn (24) is necessary for the
existence of a frontier point:

N
Mas9 = Y Ma,Z, > 0.
k=1

Both Crand Bo are taken to be positive quantities. In the
long wavelength limit, « —» 0, dMa/d«|, ., = 0, demon-
strating that this limit is a local extremum for finite values
of Cr and Bo. The nature of the extremum; maximum or
minimum, is parameter dependent and is determined
from the sign of eqn (A.6).

& (May)/do], o = 1202Cr+ 24~Bo§ﬁCr—Bo (A6)

90(ZCr)?

The long wavelength limit, « — 0, is a local minimum
when 1202Cr+24Bo(ZCr)—Bo* >0 and a local
maximum when 120% Cr+24Bo(ZCr) — Bo* < 0.
Accordingly, the extremum boundary, separating these
two extremum conditions is given by eqn (A.7) and
shown in Fig. 4 insert.

Bo*?

120424 Bo

Equation (A.7), which is determined directly from eqn
(22), is similar to the expression Takashima [12] obtained
by expanding his single component solution in powers
of a.

GCr = (A7)
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